Yet another corner of the internet

Basic questions in Complex Analysis (From Ahlfors)

Algebra of Complex numbers

  1. Prove the isomorphism between the system of matrices (wrt matrix multiplication and addition) of the following form and the field of complex numbers -

$$ \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} $$

Proof: Given a complex number $x=\alpha+i\beta$ we define the correspondence $\phi(x)=\phi(\alpha+i\beta)=$

$$ \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} $$

Let $y=\gamma+i\delta$. Thus, $\phi(x+y)=\phi(\alpha+\gamma+i(\beta+\delta))$ =

$$ \begin{pmatrix} \alpha+\gamma & \beta+\delta \\ -(\beta+\delta) & \alpha+\gamma \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} + \begin{pmatrix} \gamma & \delta \\ -\delta & \gamma \end{pmatrix} = \phi(x)+\phi(y) $$

We compute $\phi(x)\phi(y)=$ $$ \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} \begin{pmatrix} \gamma & \delta \\ -\delta & \gamma \end{pmatrix} = \begin{pmatrix} \alpha\gamma-\beta\delta & \alpha\delta+\beta\gamma \\ -(\alpha\delta+\beta\gamma) & \alpha\gamma-\beta\delta \end{pmatrix} = \phi(\alpha\gamma-\beta\delta+i(\alpha\delta+\gamma\beta)) = \phi(xy) $$

  1. Verify by calculation that the values of $\frac{z}{z^2+1}$ for $z=x+iy$ and $z=x-iy$ are conjucate.

Indeed - $$ \frac{\overline{x+iy}}{\overline{(x+iy)^2+1}} = \frac{\overline{x+iy}}{\overline{(x+iy)(x+iy)}+1} = \frac{{x-iy}}{\overline{(x+iy)}\space\overline{(x+iy)}+1} = \frac{{x-iy}}{(x-iy)(x-iy)+1} = \frac{{x-iy}}{(x-iy)^2+1} $$

  1. We Prove “Lagrange’s Identity” - $|\sum_{i=1}^{n}a_ib_i|^2=\sum_{i=1}^{n}|a_i|^2\sum_{i=1}^{n}|b_i|^2-\sum_{1\leq{i}<j\leq{n}}|a_i\bar{b_j}-a_j\bar{b_i}|^2$

We prove by induction on $n$. For the case of $n=1$ we have, by definition of the absolute value -

$$ |ab|=ab\bar{ab}=ab\bar{a}\bar{b}=a\bar{a}b\bar{b}=|a||b| \implies |ab|^2=|a|^2|b|^2 $$

We assume the statement is correct for $n\in{\mathbb{N}}$ and prove for $n+1$: $$ |\sum_{i=1}^{n+1}a_ib_i|^2=|\sum_{i=1}^{n}a_ib_i+a_{n+1}b_{n+1}|^2=|\sum_{i=1}^{n}a_ib_i|^2+|a_{n+1}b_{n+1}|^2+2Re(\overline{a_{n+1}b_{n+1}}\sum_{i=1}^{n}a_ib_i) = \\ \sum_{i=1}^{n}|a_i|^2\sum_{i=1}^{n}|b_i|^2-\sum_{1\leq{i}<j\leq{n}}|a_i\bar{b_j}-a_j\bar{b_i}|^2+|a_{n+1}b_{n+1}|^2+2Re(\overline{a_{n+1}b_{n+1}}\sum_{i=1}^{n}a_ib_i) = \\ \sum_{i=1}^{n}|a_i|^2\sum_{i=1}^{n}|b_i|^2-[\sum_{1\leq{i}<j\leq{n}}|a_i\overline{b_j}|^2+|a_j\overline{b_i}|^2-2Re(a_i\overline{b_j}\overline{a_j}b_i)] + |a_{n+1}b_{n+1}|^2+2Re(\overline{a_{n+1}b_{n+1}}\sum_{i=1}^{n}a_ib_i) $$ Next we note the following two statements -

  1. $2Re(\overline{a_{n+1}b_{n+1}}\sum_{i=1}^{n}a_ib_i)=2Re(a_1\overline{b_{n+1}}\overline{a_{n+1}}b_1+\dots+a_n\overline{b_{n+1}}\overline{a_{n+1}}b_n)=\sum_{i=1}^n2Re(a_i\overline{b_{n+1}}\overline{a_{n+1}}b_i)$

  2. Next, we add and subtract the following sums $\sum_i^n|a_ib_{n+1}|^2$ and $\sum_i^n|b_{i}a_{n+1}|^2$ to obtain the final result - $$ \sum_{i=1}^{n+1}|a_i|^2\sum_{i=1}^{n+1}|b_i|^2-[\sum_{1\leq{i}<j\leq{n+1}}|a_i\overline{b_j}|^2+|a_j\overline{b_i}|^2-2Re(a_i\overline{b_j}\overline{a_j}b_i)] = \\ |\sum_{i=1}^{n+1}a_ib_i|^2=\sum_{i=1}^{n+1}|a_i|^2\sum_{i=1}^{n+1}|b_i|^2-\sum_{1\leq{i}<j\leq{n+1}}|a_i\bar{b_j}-a_j\bar{b_i}|^2 $$ $\square$.

Going back to the question of $\overline{a}\overline{b}=$ $$ (\alpha-i\beta)(\gamma-i\delta) = (\alpha\gamma-\beta\delta)-i(\alpha\delta+\gamma\beta)=\overline{ab} $$

  1. A proof of Cauchy’s inequality - $$ |\sum_{i=1}^na_i\overline{b_i}|^2\leq\sum_{i=1}^n|a_i|^2\sum_{i=1}^n|b_i|^2 $$ This line of proof is taken from Ahlfors (p. 11) with details introduced by myself: Let $\lambda\in\mathbb{C}$. We write - $$ 0\leq\sum_{i=1}^n|a_i-\lambda\overline{b_i}|^2=\sum_{i=1}^n|a_i|^2+|\lambda|^2\sum_{i=1}^n|b_i|^2-\sum_{i=1}^n2Re(a_i\overline{\lambda}b_i) $$ We plug in $\lambda=\frac{\sum_{i=1}^na_i\overline{b_i}}{\sum_{i=1}^n|b_i|^2}$ - $$ \sum_{i=1}^n|a_i|^2+\frac{|\sum_{i=1}^na_i\overline{b_i}|}{(\sum_{i=1}^n|b_i|^2)^2}^2\sum_{i=1}^n|b_i|^2-2Re(\overline{\lambda}\sum_{i=1}^na_ib_i) = \\ \sum_{i=1}^n|a_i|^2+\frac{|\sum_{i=1}^na_i\overline{b_i}|}{(\sum_{i=1}^n|b_i|^2)^2}^2\sum_{i=1}^n|b_i|^2-2Re({\frac{\overline{\sum_{i=1}^na_i\overline{b_i}}}{\overline{\sum_{i=1}^n|b_i|^2}}}\sum_{i=1}^na_i\overline{b_i}) = \\ \sum_{i=1}^n|a_i|^2+\frac{|\sum_{i=1}^na_i\overline{b_i}|}{\sum_{i=1}^n|b_i|^2}^2-2Re(\frac{{|\sum_{i=1}^na_i\overline{b_i}|^2}}{\overline{\sum_{i=1}^n|b_i|^2}}) = \\ \sum_{i=1}^n|a_i|^2+\frac{|\sum_{i=1}^na_i\overline{b_i}|}{\sum_{i=1}^n|b_i|^2}^2-2\frac{{|\sum_{i=1}^na_i\overline{b_i}|^2}}{\sum_{i=1}^n|b_i|^2} = \\ \sum_{i=1}^n|a_i|^2-\frac{{|\sum_{i=1}^na_i\overline{b_i}|^2}}{\sum_{i=1}^n|b_i|^2} = \\ \sum_{i=1}^n|a_i|^2-\frac{{|\sum_{i=1}^na_i\overline{b_i}|^2}}{\sum_{i=1}^n|b_i|^2} \geq{0} $$

Implying the inequality. $\square$.

A different perspective:

Let $u,v\in{\mathbb{C^n}}$. Define $\braket{u,v}=\sum_{i=0}^na_i\overline{b_i}$. Implying - $|u|^2=\sum_{i=0}^na_i\overline{a_i}=\sum_{i=0}^n|a_i|^2$

Implying we are to prove the Cauchy-Schwarz inequality - $|\braket{u,v}|^2\leq{|u|^2|v|^2}$. Thus we can use the fact that $\frac{\braket{u,v}}{|v|^2}$ represents the ortogonal projection of $u$ onto $v$ to minimize $\lambda$ in the expression $|a-\lambda \bar{b}|^2$.

We choose $\lambda=\frac{\braket{a,b}}{|b|^2}$ to minimize the orthogonal projection and attain an expression with $\braket{a,b}$ -

$$ 0\leq|a-\lambda b|^2=|a-\frac{\braket{a,b}}{|b|^2}b|^2 = \\ \braket{a-\frac{\braket{a,b}}{|b|^2}b,a-\frac{\braket{a,b}}{|b|^2}b} = |a|^2+\frac{|\braket{a,b}|^2}{|b|^4}|b|^2-2\frac{|\braket{a,b}|^2}{|b|^2} = \\ |a|^2+\frac{|\braket{a,b}|^2}{|b|^2}-2\frac{|\braket{a,b}|^2}{|b|^2}=|a|^2-\frac{|\braket{a,b}|^2}{|b|^2} $$

Concluding the proof. $\square$

Analytical Geometry in the Complex plane

A line in the complex plan is define by $f(t)=a+bt$ for $t\in{\mathbb{R}}$.

Theorem: Two lines $f(t)=a+bt$ and $g(t)=a’+b’t$ are identical $\iff$ $a-a’$ and $b’$ are both multiple of $b$.

$\implies$ Assume $g=f$. If $a=a’$ we are done, otherwise there exists $t_0$ such that $g(0)=f(t)$ implying $a’=a+bt_0$ implying $a-a’=-bt_0$.

Similarly, there exists $t_1$ such that $g(1)=f(t_1)$ implying, $a’+b’=a+bt_1 \implies b’=b(t_1-t_0)$

$\impliedby$ Assume $a-a’$ and $b’$ are both multiples of $b$. Let $t\in{\mathbb{R}}$. Than, by assumption there exists constants $q,c\in{\mathbb{R}}$ such that $f(t)=a+bt=(a’+qb)+cb’t=a’+b’c(q+t)=g(c(q+t))$. $\square$

Question: Prove that the two diagonals of a parallelogram bisect each other.

Answer: Let $a,b\in{\mathbb{C}}$. We assume $|a|\neq0$, $|b|\neq0$

We consider the following real function - $g(t)=|(a+b)t|^2-|(a(1-t)+bt)|^2$

Than $g(0)=-|a|^2$ while $g(1)=|a+b|^2-|b|^2\geq{0}$ than by the intermediate value theorem there exists a point $p\in{[0,1]}$ such that $g(p)=0$ implying the result.

While the above result only shows existance we may also prove the following - Define $f(t)=(a+b)t$ and $g(t)=a(1-t)+bt$. Then -

$f(1/2)=\frac{a+b}{2}=g(1/2)$ concluding the pf.

Stereographic Projections

We present the following mapping from the sphere $S$ in $\mathbb{R}^3$ to the complex plane defined by $z=\frac{x_1+ix_2}{1-x_3}$ for $x_3\neq{1}$ Alternatively $(0,0,1)\notin{D}$.

We note the following -

$$ |z|^2=\frac{|x_1+ix_2|^2}{|1-x_3|^2}=\frac{x_1^2+x_2^2}{(1-x_3)^2}=\\ \frac{1-x_3^2}{(1-x^3)^2}=\frac{1+x_3}{1-x_3} $$

Indeed $|z^2|+1=\frac{2}{1-x_3}$ and $|z^2|-1=\frac{2x3}{1-x_3}$ implying $\frac{|z|^2-1}{|z|^2+1}=x_3$

Implying the circle $x_3=0$ is assigned to the circle $|z|^2=1$ in the plane and the $x_3<0$ hemisphere is assigned to $|z|^2<1$ and the opposite is also true.

We derive the following from our initial mapping -

$$ z(1-x_3)=x_1+ix_2 \implies z(1-\frac{|z|^2-1}{|z|^2+1})=x_1+ix_2 \implies \\ \frac{2z}{|z|^2+1}=x_1+ix_2 $$

Together with our initial condition - $1-(\frac{|z|^2-1}{|z|^2+1})^2=x_1^2+x_2^2$

We can obtain expressions for $x_1$ and $x_2$.

If we treat the $x_1,x_2$-axis in $\mathbb{R}^3$ as the complex plane than for any point $z$ in the plane defined by $z=x+iy$ there exists a point on the sphere that lies on the line between the point $z=(x,y,0)$ and the pole $(0,0,1)$. This vector is thus - $A-N=(x,y,0)-(0,0,1)=(x,y,-1)$.

Quesiton: What is the slope of $(x,y,-1)$ in the z-plane?

Answer: Indeed, the slope in the z-plane is $\frac{\Delta{z}}{|z|}=\frac{1}{|z|}=\frac{1}{\sqrt{x^2+y^2}}$

We can project this point to the sphere $S$ to obtain a point $(x_1,x_2,x_3)$ on the sphere using the expressions we derived previously (which depend on $|z|^2$). Where the line from $(0,0,1)$ to $(x,y,0)$ in the z-plane is thus $x_3=1-\frac{1}{|z|}t$

Quesiton: At what point on the sphere $S$ does the line given previously meet the sphere?

By our previous definition, to assign $x,y$ to $x_1,x_2$-plane coordinates we can use the following mapping - $$ x+iy=\frac{x_1+ix_2}{1-x_3} $$

Implying $x_1=x(1-x_3)$ and $x_2=y(1-x_3)$, we thus get - $$ (x(1-x_3))^2+(y(1-x_3))^2+x_3^2 = 1 \\ (x(1-(1-\frac{1}{|z|}t)))^2+(y(1-(1-\frac{1}{|z|}t)))^2+(1-\frac{1}{|z|}t)^2 = 1 \\ x^2(\frac{1}{|z|}t)^2 +y^2(\frac{1}{|z|}t)^2 + (1-\frac{1}{|z|}t)^2 = 1 \\ t^2 + (1-\frac{1}{|z|}t)^2 = 1 \\ t^2 + 1 - \frac{2t}{|z|} + \frac{t^2}{|z|^2} = 1 \\ t^2|z|^2-2t|z|+t^2 = 0 \\ t^2(|z|+1)-2t|z| = 0 $$

Implying $t=0$ or $t=\frac{2|z|}{1+|z|^2}$. We plug back in to the line equation $x_3=1-\frac{1}{|z|}t$ to get $x_3=1-\frac{2}{1+|z|^2}=\frac{|z|^2-1}{|z|^2+1}$

We get finally - $(\frac{2x}{1+|z|^2}, \frac{2y}{1+|z|^2}, \frac{|z|^2-1}{|z|^2+1})=(x_1,x_2,x_3)$. Implying the straight line from the pole through $(x,y,0)$ passes through $(x_1,x_2,x_3)$. $\square$

This implies that the transformation defined above corresponds to projecting points from the sphere onto the complex plane along lines passing through the pole $(0,0,1)$.

Quesiton: What is the equation describing a circle in the sphere $S$ passing through $(0,0,1)$ and $(x_1,x_2,x_3)$?

Question: Show that two points on the sphere $z,z’$ are diametrically opposite points iff $z\bar{z}’=-1$

Answer: Indeed we use the equation of the distance derived with $d(z,z’)=2R=2$: $$ 2=\frac{2|z-z’|}{\sqrt{(1+|z|^2)(1+|z’|^2)}} \\ \sqrt{(1+|z|^2)(1+|z’|^2)}=|z-z’| \\ (1+|z|^2)(1+|z’|^2) = |z-z’|^2 \\ 1+|z|^2+|z’|^2+|z|^2|z’|^2=|z|^2+|z’|^2-z\bar{z}’-\bar{z}z’ \\ 1+|z|^2|z’|^2+z\bar{z}’+\bar{z}z’=0 \\ (1+\bar{z}z’)(1+z\bar{z}’)=0 \implies |1+z\bar{z}|^2=0 \implies z\bar{z}’=-1 $$